Malware Research at SMU

Tom Chen SMU tchen@engr.smu.edu www.engr.smu.edu/~tchen

Outline

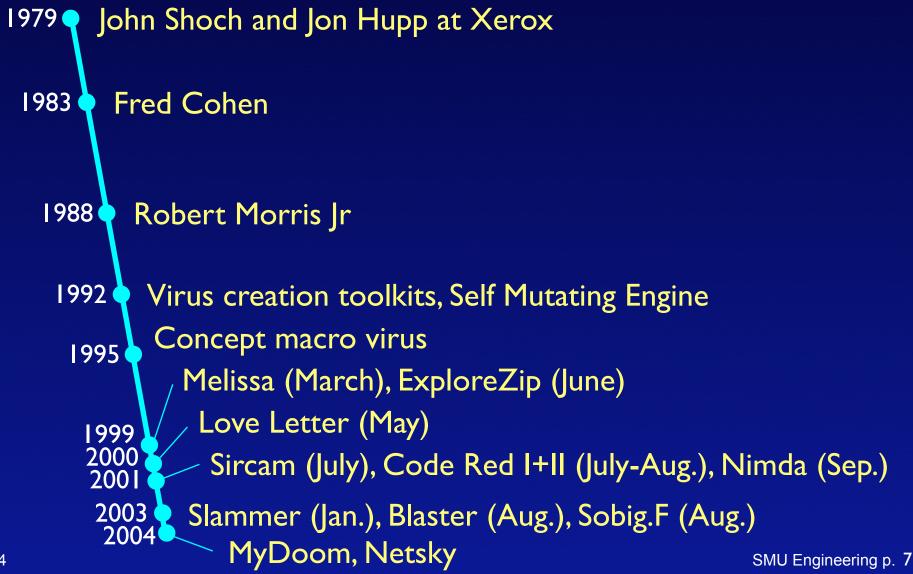
- About SMU and Me
- Virus Research Lab
- Early Worm Detection
- Epidemic Modeling
- New Research Interests

About SMU

- Small private university with 6 schools engineering, sciences, arts, business, law, theology
- 6,300 undergrads; 3,600 grads; 1,200 professional (law, theology) students
- School of Engineering: 51 faculty in 5 departments
- Dept of EE: specialization in signal processing, communications, networking, optics

About Me

- BS and MS in EE from MIT, PhD in EE from U. California, Berkeley
- GTE (Verizon) Labs: research in ATM switching, traffic modeling/control, network operations
- 1997 joined EE Dept at SMU: traffic control, network security

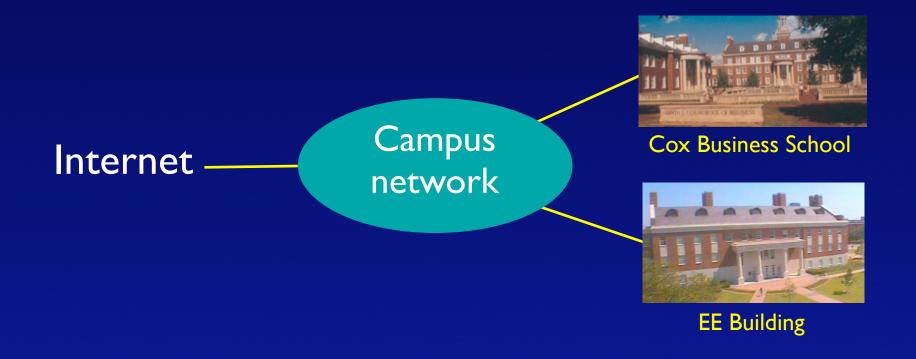

Research Interests

- Convergence of traffic control and Internet threats
 - Large-scale traffic effects of worm epidemics
 - Traffic control (packet classification, filtering/ throttling) for detection and defenses
- Deception-based attacks and defenses
 - Social engineering, honeypots

Motivations

- Worms and social engineering attacks (phishing, spam) have widespread effects in Internet
 - Top worms (Loveletter, Code Red, Slammer,...) causes billions in damages
 - 78% organizations hit by virus/worm, \$200k average damage per organization [2004 FBI/ CSI survey]
 - 40% Fortune 100 companies hit [Symantec report]

25 years- problem continues to get worse
We want to apply theories (traffic control, epidemiology) towards detection and control


TC/BT/11-5-04

Research Activities

- Virus research lab
- Early worm detection
- Epidemic modeling

Virus Research Lab

 Distributed computers in EE building and Business School

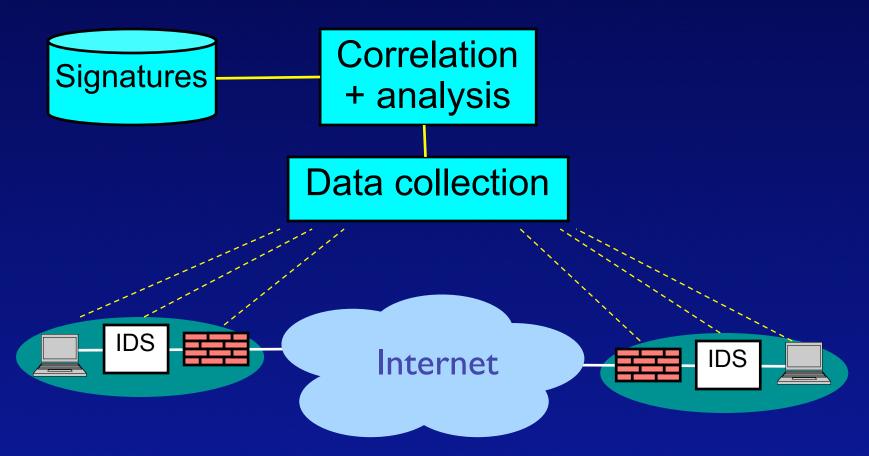
Virus Research Lab (cont)

- Intrusion detection systems to monitor live traffic
 - Snort (network IDS), Prelude (event correlation), Samhain (host-based IDS), Nagios (network manager)
- Honeypots for worm detection/capture
 - Honeyd (honeypot), Logwatch (log monitoring)

Virus Research Lab (cont)

- Network/worm simulator (Java)
 - To simulate different worm behaviors in different network topologies
 - To find worm-resistant network topologies

Early Detection of Worms


- Goal is global system including honeypots for early warning of new worm outbreaks
- Honeypots are traditionally used for postattack forensics
- For early warning, honeypots need augmentation with real-time analysis

Early Detection (cont)

- Jointly with Symantec to enhance their DeepSight Threat Management System
 - DeepSight collects log data from hosts, firewalls, IDSs from 20,000 organizations in 180 countries
 - Symantec correlates and analyzes traffic data to track attacks by type, source, time, targets

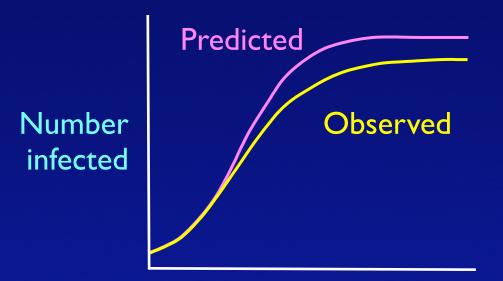
Early Detection (cont)

Architecture of DeepSight

Early Detection (cont)

- We want to add honeypots to DeepSight
- Honeypot sensors have advantage of low false positives (a problem with IDSs)
- DeepSight has correlation/analysis engine to make honeypots useful for real-time detection
 - Modifications to correlation engine needed

Epidemic Modeling


- Epidemic models predict spreading of diseases through populations
 - Deterministic and stochastic models developed over 250 years
 - Helped devise vaccination strategies, eg, smallpox
- Our goal is to adapt epidemic models to computer viruses and worms
 - Take into account network congestion

Basic Epidemic Model

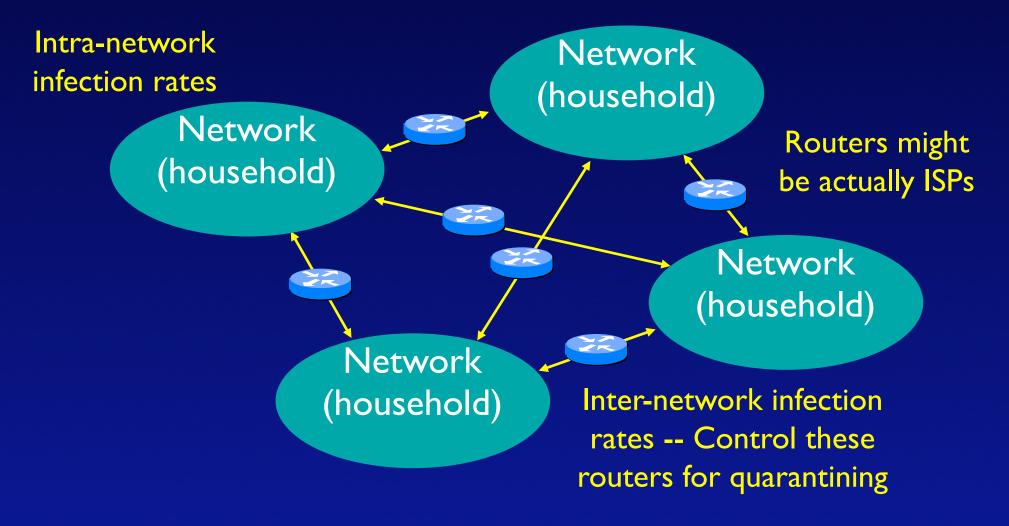
- Assumes all hosts are initially Susceptible, can become Infected after contact with an Infected
 - Assumes fixed population and random contacts
- Then basic epidemic model predicts number of Infected hosts has logistic growth

Basic Epidemic (cont)

- Logistic equation predicts "S" growth
- Observed worm outbreaks (eg, Code Red) tend to slow down more quickly than predicted

Basic Epidemic (cont)

- Initial rate is exponential: random scanning is efficient when susceptible hosts are many
- Later rate slow downs: random scanning is inefficient when susceptible hosts are few
- Spreading rate also slows due to network congestion caused by heavy worm traffic


Dynamic Quarantine

- Recent worms spread too quickly for manual response
- Dynamic quarantine tries to isolate worm outbreak from spreading to other parts of Internet
 - Cisco and Microsoft proposals
 - Rate throttling proposals
- Epidemic modeling can evaluate effectiveness

Quarantining (cont)

- "Community of households" epidemic model assumes
 - Population is divided into households
 - Infection rates within households can be different than between households
- Similar to structure of Internet as "network of networks"
 - Household = organization's network

Quarantining (cont)

Quarantining

- As outbreak spreads, congestion causes inter-network infection rates to slow down outbreak naturally (seen empirically)
- Dynamic quarantining: quickly shutting down or throttling inter-network rates should slow down outbreak faster
 - Reaction time is critical
 - In practice, rate throttling may be preferred as gentler than blocking

New Research Interests

- Phishing
 - Damages: \$1.2 billion to US financial organizations; 1.8 million consumer victims [Symantec]
 - 1,974 new unique phishing attacks in July 2004; 50% monthly growth rate in attacks [Anti-Phishing Working Group]

Phishing (cont)

- Our approach: email honeypots (spamtraps) are honeypots modified to receive and monitor email at fake addresses
 - Reliably capture spam
- Modify spam filters to detect phishing emails
- Analyze contents and links to fake Web sites, generate new email filter rules

New Research (cont)

- Bot nets
 - Symantec tracking 30,000+ compromised hosts; around 1,000 variants each of Gaobot, Randex, Spybot
 - Used for remote control, information theft, DDoS
 - Potentially useful for fast launching worms
 - Perhaps used by organized crime

Bot Nets (cont)

- Bots typically use IRC (Internet relay chat) channels for command and control
- We are seeking signs of bot nets on IRC channels

Conclusions

- Interests in traffic control and modeling applied to network security
 - Early detection, dynamic quarantining, epidemic modeling
- Interests in deception-based threats and defenses
 - Phishing, honeypots